Risk Retention Regulation of Bank Asset Securitization

Guixia Guo
Institute of International Economy, UIBE

2012.05.22
Background: I

- Large volume of bank asset securitization has been criticized as a major contagion factor contributing to the 2007-08 financial crisis (Diamond and Rajan, 2009; Hellwig, 2009; Stein, 2010).

![Figure 1: Issuance of ABS in US (1996-2010; $ in billions)](image-url)
Background: II

Figure 2: Securitization Process
"Risk Retention Requirement" was proposed by US and EU to regulate bank asset securitization: skin in the game.

<table>
<thead>
<tr>
<th>Item</th>
<th>Name of the Act</th>
<th>The Regulated</th>
<th>Retention Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>(1) 2009.6.17: Financial Regulatory Reform: A New Foundation</td>
<td>-Creditors originating and transferring loans to third parties; -Securitizers of ABS.</td>
<td>At least 5% of the involved credit exposure, hedging or risk transferring prohibited</td>
</tr>
<tr>
<td></td>
<td>(2) 2010.7.21: Dodd-Frank Act</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>2009.7: Amendment to CRD (Directives 2006/48/EC and 2006/49/EC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Risk Retention Requirement of US and EU

Both US and EU require more information disclosure on ABS; not on retention ratio.
“Risk Retention Requirement" was proposed by US and EU to regulate bank asset securitization: skin in the game.

<table>
<thead>
<tr>
<th>Item</th>
<th>Name of the Act</th>
<th>The Regulated</th>
<th>Retention Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>(1) 2009.6.17: Financial Regulatory Reform: A New Foundation (2) 2010.7.21: Dodd-Frank Act</td>
<td>-Creditors originating and transferring loans to third parties; -Securitizers of ABS.</td>
<td>At least 5% of the involved credit exposure, hedging or risk transferring prohibited</td>
</tr>
<tr>
<td>EU</td>
<td>2009.7: Amendment to CRD (Directives 2006/48/EC and 2006/49/EC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Risk Retention Requirement of US and EU

Both US and EU require more information disclosure on ABS; not on retention ratio.
Background: *III*

Figure 4: Degree of Tranche Retention of US ABS (%; IMF Estimates)
Research Question

- Whether the flat rate of risk retention requirement is soundly-founded?
 - Why 5%?

- How to theoretically rationalize the risk retention requirement?
 - Reducing asymmetric information?
 - Protecting investors?
 - Enhancing social welfare?

- Should risk retention requirement be complemented by information disclosure requirement on it?
Research Question

- Whether the flat rate of risk retention requirement is soundly-founded?
 - Why 5%?

- How to theoretically rationalize the risk retention requirement?
 - Reducing asymmetric information?
 - Protecting investors?
 - Enhancing social welfare?

- Should risk retention requirement be complemented by information disclosure requirement on it?
Research Question

- Whether the flat rate of risk retention requirement is soundly-founded?
 - Why 5%?

- How to theoretically rationalize the risk retention requirement?
 - Reducing asymmetric information?
 - Protecting investors?
 - Enhancing social welfare?

- Should risk retention requirement be complemented by information disclosure requirement on it?
Severe asymmetric information in ABS (primary) market: Morgan (2002); Duffie (2008).

Reducing informational asymmetry by signalling: Leland and Pyle (1977); DeMarzo (2005).

- Unrelated to risk retention requirement.

- Actually a moral hazard story.

My purpose: to evaluate economic and welfare effect of risk retention requirement on bank asset securitization.
Severe asymmetric information in ABS (primary) market: Morgan (2002); Duffie (2008).

Reducing informational asymmetry by signalling: Leland and Pyle (1977); DeMarzo (2005).
 - Unrelated to risk retention requirement.

 - Actually a moral hazard story.

My purpose: to evaluate economic and welfare effect of risk retention requirement on bank asset securitization.
Severe asymmetric information in ABS (primary) market: Morgan (2002); Duffie (2008).

Reducing informational asymmetry by signalling: Leland and Pyle (1977); DeMarzo (2005).

 Unrelated to risk retention requirement.

 Actually a moral hazard story.

My purpose: to evaluate economic and welfare effect of risk retention requirement on bank asset securitization.
Model Setup

- A bank and a continuum of dispersed investors, with mean-variance utility function with ARA γ and λ.
- At $t = 0$, B/S:
 - Liability: D deposits (interest rate r_D) and K capital (interest rate 1). No C&K.
 - Asset: riskless asset $(D + K - X)$ (rate of return r_f) and a continuum of risky assets indexed by $j \in [0, 1]$, each of amount X_j and random time 2 rate of return $\tilde{r}_j \sim N(\hat{r}_j, \sigma^2)$. No maturity mismatch.
- ★ \hat{r}_j: asset quality. Representative risky asset with quality \hat{r}.
Model Setup

A bank and a continuum of dispersed investors, with mean-variance utility function with ARA γ and λ.

At $t = 0$, B/S:
- Liability: D deposits (interest rate r_D) and K capital (interest rate 1). No CAR.
- Asset: riskless asset $(D + K - X)$ (rate of return r_f) and a continuum of risky assets indexed by $j \in [0, 1]$, each of amount X_j and random time 2 rate of return $\tilde{r}_j \sim N(\hat{r}_j, \sigma^2)$. No maturity mismatch.

\star \hat{r}_j: asset quality. Representative risky asset with quality \hat{r}.
At $t = 1$ and $t = 2$

- At $t = 1$, the bank securitizes q proportion of its assets to meet the liquidity needs. No re-investment.

- ★ Informational asymmetry here:
 - \hat{r} known only to the originating bank.
 - For investors: $\hat{r} \sim U[\underline{r}, \bar{r}]$, and $\underline{r} > r_f > 1$. Information set: Ω.

- At $t = 2$, \tilde{r} realizes, all uncertainties are dissolved.
At $t = 1$ and $t = 2$

- At $t = 1$, the bank securitizes q proportion of its assets to meet the liquidity needs. No re-investment.
- ★ Informational asymmetry here:
 - \hat{r} known only to the originating bank.
 - For investors: $\hat{r} \sim U[\underline{r}, \bar{r}]$, and $\underline{r} > r_f > 1$. Information set: Ω.
- At $t = 2$, \tilde{r} realizes, all uncertainties are dissolved.
Consider investor i’s optimal demand y_i for securitized asset,

$$\max_{y_i} E_{\hat{r}} \{ E[y_i(\tilde{r} - p)|\Omega, \hat{r}] \}$$

$$- \frac{1}{2}\lambda \cdot \{ Var_{\hat{r}}[E(y_i(\tilde{r} - p)|\Omega, \hat{r})] + E_{\hat{r}}[Var(y_i(\tilde{r} - p)|\Omega, \hat{r})] \}$$

$$= y_i \cdot [E(\hat{r}|\Omega) - p] - \frac{1}{2}\lambda y_i^2 \cdot [Var(\hat{r}|\Omega) + \sigma^2]$$

(1)

Bank chooses optimal securitization intensity q to maximize its expected utility derived from end-of-period wealth,

$$\max_q Kr_f + D(r_f - r_D) + qX[p(q) - r_f] + (1 - q)X(\hat{r} - r_f) - \frac{1}{2}\gamma \sigma^2 X^2 (1 - q)^2$$

(2)
Scenario B: Complete Information as the Benchmark

Consider investor i’s optimal demand y_i for securitized asset,

$$
\max \ E_\tilde{r} \{ E \left[y_i(\tilde{r} - p) | \Omega, \hat{r} \right] \} \\
- \frac{1}{2} \lambda \cdot \{ \text{Var}_\tilde{r} \left[E \left(y_i(\tilde{r} - p) | \Omega, \hat{r} \right) \right] + E_\tilde{r} \left[\text{Var} \left(y_i(\tilde{r} - p) | \Omega, \hat{r} \right) \right] \} \\
= y_i \cdot [E(\hat{r}|\Omega) - p] - \frac{1}{2} \lambda y_i^2 \cdot \left[\text{Var}(\hat{r}|\Omega) + \sigma^2 \right]
$$

(1)

Bank chooses optimal securitization intensity q to maximize its expected utility derived from end-of-period wealth,

$$
\max \ q \ Kr_f + D(r_f - r_D) + qX[p(q) - r_f] + (1 - q)X(\hat{r} - r_f) - \frac{1}{2} \gamma \sigma^2 X^2(1 - q)^2
$$

(2)
Definition 1

Given \(\{D, X; \hat{r}, r_D, r_f; \lambda, \gamma; \sigma^2\} \), a competitive market equilibrium is market price and securitization intensity \(\{p, q\} \), and security demand \(\{y_i\}_{i\in[0,1]} \) so that:

1. Given the information set \(\Omega \) derived from securitization intensity \(q \), security demand \(y_i \) of each investor \(i \in [0,1] \) maximizes its expected utility (1);

2. Given market price \(p \), securitization intensity \(q \) maximizes the bank’s expected utility (2);

3. Security market clears: \(\int_0^1 y_i \, di = qX \).
Proposition 1

When asset quality is observable to both the originating bank and investors, the bank would like to securitize a constant proportion of its assets of any quality \(\hat{r} \in [r, \bar{r}] \):

\[
p_B = \hat{r} - \lambda \sigma^2 X \cdot \frac{\gamma}{\gamma + 2\lambda}, \quad q_B = \frac{\gamma}{\gamma + 2\lambda}
\]

(3)
Scenario U: Unregulated Equilibrium with Asymmetric Information

- Information set: $\Omega_U = \{ q > 0 \}$.
- **Assumption A:** $\gamma < \frac{\bar{r} - r}{2\sigma^2 X}$.
- Define $\eta^2 \equiv \text{Var}(\hat{r}) = \frac{(\bar{r} - r)^2}{12}$.
Proposition 2

Under Assumptions A, the unregulated competitive market equilibrium is:

\[p_U = \begin{cases}
 r + \gamma \sigma^2 X - \lambda q_U X \cdot (\eta_U^2 + \sigma^2), & \text{if } r < \hat{r} < \hat{r}_U \\
 0, & \text{if } \hat{r}_U < \hat{r} < \bar{r}
\end{cases} \]

If \(\gamma < 2\lambda(1 + \frac{1}{3}\gamma^2\sigma^2X^2) \),

\[q_U = \begin{cases}
 \frac{r + 2\gamma \sigma^2 X - \hat{r}}{2\lambda X \cdot (\eta_U^2 + \sigma^2) + \gamma \sigma^2 X}, & \text{if } r < \hat{r} < \hat{r}_U \\
 0, & \text{if } \hat{r}_U < \hat{r} < \bar{r}
\end{cases} \]

If \(\gamma > 2\lambda(1 + \frac{1}{3}\gamma^2\sigma^2X^2) \),

\[q_U = \begin{cases}
 1, & \text{if } r < \hat{r} < r + \gamma \sigma^2 X - 2\lambda X(\eta_U^2 + \sigma^2) \\
 \frac{r + 2\gamma \sigma^2 X - \hat{r}}{2\lambda X \cdot (\eta_U^2 + \sigma^2) + \gamma \sigma^2 X}, & \text{if } r + \gamma \sigma^2 X - 2\lambda X(\eta_U^2 + \sigma^2) < \hat{r} < \hat{r}_U \\
 0, & \text{if } \hat{r}_U < \hat{r} < \bar{r}
\end{cases} \]

where \(\eta_U^2 \equiv \frac{1}{3}\gamma^2\sigma^4X^2 \), \(\hat{r}_U \equiv r + 2\gamma \sigma^2 X \).
Distortion I of Informational Asymmetry

Figure 6: Comparing Securitization Intensity

Securitization Level Distortion: $LD \equiv AS_U = \bar{r} - \hat{r}_U$.

\hat{r}_U
Distortion II of Informational Asymmetry

Figure 7: Comparing Market Valuation

- **Securitization Structural Distortion:**

 \[SD \equiv \int_{2}^{\hat{r}_U} q_U X \cdot [\hat{r} - E(\hat{r}|\Omega_U)] d\hat{r}, \quad E(\hat{r}|\Omega_U) = \frac{r + \hat{r}_U}{2}. \]
Competitive Market Equilibrium of Scenarios R

- Risk retention requirement: $q = \bar{q}$, and not disclosed to investors.
- Information set: $\Omega_R = \{q_R = \bar{q} > 0\}$,

Proposition 3

Under Assumption A, the competitive market equilibrium of scenario R is:

$$p_R = \begin{cases} r + \frac{1}{2} \gamma \sigma^2 X (2 - \bar{q}) - 2 \lambda \bar{q} X \cdot (\sigma^2 + \eta_R^2), & \text{if } r < \hat{r} < \hat{r}_R, \ 0 < \bar{q} < \bar{q}_R \\ 0, & \text{if otherwise} \end{cases}$$

$$q_R = \begin{cases} \bar{q}, & \text{if } r < \hat{r} < \hat{r}_R \text{ and } 0 < \bar{q} < \bar{q}_R \\ 0, & \text{if otherwise} \end{cases}$$

where $\bar{q}_R = \frac{2\gamma}{\gamma + 2\lambda}$ is the upper bound of \bar{q} for $\hat{r}_R > r$ to hold, and

$$\eta_R^2 = \frac{1}{2\lambda^2 \bar{q}^2 X^2} \left\{ 3 + \lambda \bar{q} X^2 \sigma^2 [\gamma (2 - \bar{q}) - 2 \lambda \bar{q}] - \sqrt{9 + 6 \lambda \bar{q} X^2 \sigma^2 [\gamma (2 - \bar{q}) - 2 \lambda \bar{q}]} \right\}$$

$$\hat{r}_R = r + \frac{1}{\lambda \bar{q} X} \cdot \left\{ \sqrt{9 + 6 \lambda \bar{q} X^2 \sigma^2 \cdot [\gamma (2 - \bar{q}) - 2 \lambda \bar{q}]} - 3 \right\}$$
Competitive Market Equilibrium of Scenarios R

- Risk retention requirement: $q = \bar{q}$, and not disclosed to investors.
- Information set: $\Omega_R = \{q_R = \bar{q} > 0\}$,

Proposition 3

Under Assumption A, the competitive market equilibrium of scenario R is:

$$p_R = \begin{cases} r + \frac{1}{2} \gamma \sigma^2 X (2 - \bar{q}) - 2 \lambda \bar{q} X \cdot (\sigma^2 + \eta^2_R), & \text{if } r < \hat{r} < \hat{r}_R, \ 0 < \bar{q} < \bar{q}_R \\ 0, & \text{if otherwise} \end{cases}$$

$$q_R = \begin{cases} \bar{q}, & \text{if } r < \hat{r} < \hat{r}_R \text{ and } 0 < \bar{q} < \bar{q}_R \\ 0, & \text{if otherwise} \end{cases}$$

where $\bar{q}_R = \frac{2\gamma}{\gamma + 2\lambda}$ is the upper bound of \bar{q} for $\hat{r}_R > r$ to hold, and

$$\eta^2_R = \frac{1}{2 \lambda^2 \bar{q}^2 X^2} \left\{ 3 + \lambda \bar{q} X^2 \sigma^2 \left[\gamma (2 - \bar{q}) - 2 \lambda \bar{q} \right] - \sqrt{9 + 6 \lambda \bar{q} X^2 \sigma^2 \left[\gamma (2 - \bar{q}) - 2 \lambda \bar{q} \right]} \right\}$$

$$\hat{r}_R = r + \frac{1}{\lambda \bar{q} X} \cdot \left\{ \sqrt{9 + 6 \lambda \bar{q} X^2 \sigma^2 \left[\gamma (2 - \bar{q}) - 2 \lambda \bar{q} \right]} - 3 \right\}$$
Sub-optimality of Flat-Rate Retention Ratio

Optimal \bar{q}^* that maximizes expected social welfare is implicitly determined by

$$\sqrt{9 + 6\lambda\bar{q}X^2\sigma^2 \cdot [\gamma(2 - \bar{q}) - 2\lambda\bar{q}] \cdot [6 + \lambda\bar{q}^2\sigma^2X^2(\gamma + 4\lambda)]}$$

$$= 18 - 3\lambda\bar{q}^2\gamma\sigma^2X^2 + 12\lambda\bar{q}\gamma\sigma^2X^2$$

$$+ 2\gamma\bar{q}^2(\lambda\sigma^2X^2)^2 \cdot [\gamma(2 - \bar{q})(1 - 2\bar{q}) - 4\lambda\bar{q}(1 - \bar{q})]$$

Proposition 4

Given volatility of risky asset return σ^2 and loan value X, there is no optimal flat rate of retention ratio requirement for all markets with securitizers and investors of different risk attitudes.
Sub-optimality of Flat-Rate Retention Ratio

Optimal \bar{q}^* that maximizes expected social welfare is implicitly determined by

$$\sqrt{9 + 6\lambda\bar{q}X^2\sigma^2} \cdot [\gamma(2 - \bar{q}) - 2\lambda\bar{q}] \cdot [6 + \lambda\bar{q}^2\sigma^2X^2(\gamma + 4\lambda)]$$

$$= 18 - 3\lambda\bar{q}^2\gamma\sigma^2X^2 + 12\lambda\bar{q}\gamma\sigma^2X^2$$

$$+ 2\gamma\bar{q}^2(\lambda\sigma^2X^2)^2 \cdot [\gamma(2 - \bar{q})(1 - 2\bar{q}) - 4\lambda\bar{q}(1 - \bar{q})]$$

Proposition 4

Given volatility of risky asset return σ^2 and loan value X, there is no optimal flat rate of retention ratio requirement for all markets with securitizers and investors of different risk attitudes.
Competitive Market Equilibrium of Scenarios D

- q_D acts as a noiseless signal of asset quality.
- Information set: $\Omega_D = \{q_D\}$.

Proposition 5

The equilibrium asset price and securitization intensity in the market with asymmetric information and information disclosure regulation are:

$$p_D = \hat{r} - \lambda \sigma^2 q_D X$$ \hspace{1cm} (5)

and q_D is the inverse function of $\hat{r}(q_D)$, where

$$\hat{r}(q_D) = \gamma \sigma^2 X \cdot (q_D - \ln q_D) + 2 \lambda \sigma^2 X q_D + r - \gamma \sigma^2 X (1 - \ln \frac{\gamma}{\gamma + 2\lambda})$$ \hspace{1cm} (6)
Competitive Market Equilibrium of Scenarios D

- q_D acts as a noiseless signal of asset quality.
- Information set: $\Omega_D = \{q_D\}$.

Proposition 5

The equilibrium asset price and securitization intensity in the market with asymmetric information and information disclosure regulation are:

$$p_D = \hat{r} - \lambda \sigma^2 q_D X$$

(5)

and q_D is the inverse function of $\hat{r}(q_D)$, where

$$\hat{r}(q_D) = \gamma \sigma^2 X \cdot (q_D - \ln q_D) + 2\lambda \sigma^2 X q_D + r - \gamma \sigma^2 X (1 - \ln \frac{\gamma}{\gamma + 2\lambda})$$

(6)
Comprehensive Comparisons

Figure 8: Comprehensively Comparing Securitization Intensity

Figure 9: Comprehensively Comparing Market Valuation
Corrected Distortions by R and D Regulation

Proposition 6

Risk retention regulation is effective in correcting structural distortion resulted from asset opaqueness; information disclosure regulation is effective in correcting both structural and level distortions.

- R regulation corrects structural distortion:
 \[\int_{r}^{\hat{r}_R} q_X[r - E(\hat{r}|\Omega_R)]dr = 0, \]
 where \(E(\hat{r}|\Omega_R) = \frac{r + \hat{r}_R}{2} \);

- D regulation corrects structural distortion:
 \[\int_{r}^{\hat{r}} q_DX(r - r)dr = 0; \]

- D regulation corrects level distortion:
 \(AS_D = 0. \)
Corrected Distortions by R and D Regulation

Proposition 6

Risk retention regulation is effective in correcting structural distortion resulted from asset opaqueness; information disclosure regulation is effective in correcting both structural and level distortions.

- R regulation corrects structural distortion: \[\int_r^{\hat{r}_R} qX[r - E(\hat{r}|\Omega_R)]dr = 0, \]
 where \(E(\hat{r}|\Omega_R) = \frac{r + \hat{r}_R}{2}; \)
- D regulation corrects structural distortion: \[\int_r^{\hat{r}_D} qX(r - r) dr = 0. \]
- D regulation corrects level distortion: \(AS_D = 0. \)
Corrected Distortions by R and D Regulation

Proposition 6

Risk retention regulation is effective in correcting structural distortion resulted from asset opaqueness; information disclosure regulation is effective in correcting both structural and level distortions.

- R regulation corrects structural distortion: \[
\int_{\underline{r}}^{\bar{r}} qX[r - E(\hat{r}|\Omega_R)]dr = 0,
\]
 where \(E(\hat{r}|\Omega_R) = \frac{r + \hat{r}_R}{2}\);

- D regulation corrects structural distortion: \[
\int_{\underline{r}}^{\bar{r}} qDX(r - r)dr = 0;
\]
- D regulation corrects level distortion: \(AS_D = 0\).
Proposition 6

Risk retention regulation is effective in correcting structural distortion resulted from asset opaqueness; information disclosure regulation is effective in correcting both structural and level distortions.

- R regulation corrects structural distortion: $\int_{\hat{\gamma}}^{\hat{\gamma}} qX[r - E(\hat{r} | \Omega_R)]dr = 0$, where $E(\hat{r} | \Omega_R) = \frac{r + \hat{\gamma}}{2}$;
- D regulation corrects structural distortion: $\int_{\hat{\gamma}}^{\bar{r}} qDX(r - r)dr = 0$;
- D regulation corrects level distortion: $AS_D = 0$.
New Distortions of R and D Regulation

Proposition 7

*The level distortion resulted from informational asymmetry is aggravated by risk retention regulation: $\hat{r}_R < \hat{r}_U$."

- Intuition: $\Omega_R = \{q_R = \bar{q} > 0\}$ has less effective information content than $\Omega_U = \{q_U > 0\}$.

- ★ New distortion of R Regulation: Securitization Level Distortion is aggravated.

- ★ New distortion of D Regulation: Distortion of securitization intensity to send signals.
Proposition 7

The level distortion resulted from informational asymmetry is aggravated by risk retention regulation: \(\hat{r}_R < \hat{r}_U \).

- Intuition: \(\Omega_R = \{ q_R = \bar{q} > 0 \} \) has less effective information content than \(\Omega_U = \{ q_U > 0 \} \).

- ★ New distortion of \(R \) Regulation: Securitization Level Distortion is aggravated.

- ★ New distortion of \(D \) Regulation: Distortion of securitization intensity to send signals.
New Distortions of R and D Regulation

Proposition 7

The level distortion resulted from informational asymmetry is aggravated by risk retention regulation: $\hat{r}_R < \hat{r}_U$.

- Intuition: $\Omega_R = \{q_R = \bar{q} > 0\}$ has less effective information content than $\Omega_U = \{q_U > 0\}$.

- ★ New distortion of R Regulation: Securitization Level Distortion is aggravated.

- ★ New distortion of D Regulation: Distortion of securitization intensity to send signals.
Evaluating Welfare Effects of \(R \) and \(D \) Regulation

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>(Correcting) Level Distortion</th>
<th>(Correcting) Structural Distortion</th>
<th>Regulatory Cost</th>
<th>Aggregate Welfare Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unregulated Scenario</td>
<td>Higher if (\gamma) decreases</td>
<td>Higher if (\gamma) increases, or (\lambda) decreases</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>R Regulation over Unregulated Scenario</td>
<td>(-)</td>
<td>Higher if (\gamma) increases, or (\lambda) decreases</td>
<td>Lower if (\gamma) increases, or (\lambda) decreases</td>
<td>Higher if (\gamma) increases, or (\lambda) decreases</td>
</tr>
<tr>
<td>D Regulation over R Regulation</td>
<td>Higher if (\gamma) decreases, or (\lambda) increases</td>
<td>Higher if (\gamma) increases, or (\lambda) decreases</td>
<td>Lower if (\lambda) increases</td>
<td>Higher if (\lambda) increases</td>
</tr>
</tbody>
</table>

Figure 10: Welfare Effects of \(R \) and \(D \) Regulation

Proposition 8

Risk retention regulation tends to increase expected social welfare when the bank is more risk averse (i.e. \(\gamma \) is relatively large); information disclosure regulation tends to dominate risk retention regulation when investors are more risk averse (i.e. \(\lambda \) is relatively large).
A Numerical Example

Let $\sigma^2 = 1$, $X = 1$.

Bolded line: $\overline{q}^* = 0.95$ in Figure 9, and $\overline{q}^* = 0.5$ in Figure 10.

Figure 11: $\overline{q}^* = 0.95$ but Market Breaks Down

Figure 12: $\overline{q}^* = 0.5$ and No Market Breakdown
A Numerical Example (Continued)

Figure 13: \bar{q}^* and Risk Attitude of Investors

Figure 14: \bar{q}^* and Risk Attitude of the Bank
A Numerical Example (Continued)

Figure 15: When R Regulation Improves Social Welfare

- *R* Regulation improves social welfare upon the unregulated case when \(\gamma \) is relatively large.
A Numerical Example (Continued)

Figure 16: When D Regulation Improves Upon R Regulation

- D Regulation can complement R Regulation when λ is relatively large.
Conclusion: Back to the Questions

- **Whether the flat rate of risk retention requirement is soundly-founded?**
 - It is impossible for a flat rate retention ratio requirement to be optimal for all markets.

- **How to theoretically rationalize the risk retention requirement?**
 - Reducing asymmetric information? Only information disclosure requirement can.
 - Protecting investors? Both.
 - Enhancing social welfare? Neither.

- **Should risk retention requirement be complemented by information disclosure requirement?**
 - Not necessarily. It complements the former when investors are relatively risk averse.
Conclusion: Back to the Questions

- Whether the flat rate of risk retention requirement is soundly-founded?
 - It is impossible for a flat rate retention ratio requirement to be optimal for all markets.

- How to theoretically rationalize the risk retention requirement?
 - Reducing asymmetric information? Only information disclosure requirement can.
 - Protecting investors? Both.
 - Enhancing social welfare? Neither.

- Should risk retention requirement be complemented by information disclosure requirement?
 - Not necessarily. It complements the former when investors are relatively risk averse.
Conclusion: Back to the Questions

- Whether the flat rate of risk retention requirement is soundly-founded?
 - It is impossible for a flat rate retention ratio requirement to be optimal for all markets.

- How to theoretically rationalize the risk retention requirement?
 - Reducing asymmetric information? Only information disclosure requirement can.
 - Protecting investors? Both.
 - Enhancing social welfare? Neither.

- Should risk retention requirement be complemented by information disclosure requirement?
 - Not necessarily. It complements the former when investors are relatively risk averse.
Future Directions

- Modelling securitization process, especially tranching.
 - Form of retention.
- Risk retention regulation and double-sided moral hazard.
Future Directions

- Modelling securitization process, especially tranching.
 - Form of retention.
- Risk retention regulation and double-sided moral hazard.
Thank You!